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Abstract. We consider a typical semiconductor resonant tunnelling GaAs/AlGaAs/GaAs
nanostructure which forms a double-barrier potential with quasienergy levels corresponding
to transition frequencies in the infrared and microwave regions. Two types of dynamical
perturbation of the heterostructure in the formV1(x, t) = V1x cos�t and V2(t) = V2 cos�t

are considered. We analyse numerically a reconstruction of the electron transmission through
the heterostructure and the current–voltage characteristics (IVC) under the influence of these
dynamical perturbations. Both weak and strong perturbations are considered. We investigate
the dependences of the transmission on the electron energy and the frequency of the external
field with the main accent on the case where a frequency of the perturbation is tuned to a
transition between quasienergies of the double-barrier structure. It is found that these resonant
phenomena give rise to new peaks and dips in the IVC. In particular, it is shown that the dipole
type of perturbationV1(x, t) gives rise to a Rabi splitting of the transmission peaks and under
certain conditions to a Rabi splitting of the IVC peaks and dips. We demonstrate that dynamical
perturbation may induce a direct current opposite to the direction of the applied voltage, and
that this phenomenon takes the form of a sharp dip which has a resonant origin. It is observed
that the dipole type of perturbationV1(x, t) of laser radiation is more effective for tuning the
IVC than the first perturbationV2(t). Also absorption and emission of energy by an electron
transmitted through the DBRTS are considered.

1. Introduction

One significant manifestation of quantum effects in mesoscopic systems is the resonant
tunnelling that takes place in a heterojunction nanostructure, fabricated from semiconductor
materials such as GaAs/AlxGa1−xAs and consisting of artificial potential barriers and
quantum wells with dimensions of the order of the electron wavelength. Since the pioneering
work of Tsu and Esaki [1], and Chang, Esaki, and Tsu [2], there has been a great deal of
interest, both experimental and theoretical, in double-barrier resonant tunnelling structures
(DBRTS). The most common DBRTS experiments involve application of a bias across
the device while measuring the resulting current. The typical DBRTS current–voltage
characteristic (IVC) has one or more differential negative-resistance regions depending on
the well width. Because the IVC is the most readily measured quantity, we focus here on
its calculation with the aim of investigating how dynamical processes in DBRTS induced
by time-periodical perturbations are reflected in the IVC.

Over the past decade resonant tunnelling through a time-modulated potential has
attracted considerable interest. Inspired by the original Büttiker and Landauer [3] (see
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also Haavig and Reifenberger [4]) study of a single time-modulated barrier, significant
recent theoretical interest has focused on quantum tunnelling in a variety of time-dependent
potentials. The main issues in this area include: exact solutions for the transmission
probability for various forms of the potential barriers [5, 6]; the time of tunnelling [7–
9]; and ‘elevator resonance activation’ of tunnelling particles by an adiabatically varying
potential [10]. In application to the DBRTS the first study [11] of the resonant tunnelling
through the DBRTS in the presence of a harmonic time-dependent potential was based on
a model in which the static potential barriers and the harmonic time-dependent potential
were both taken to beδ-functions. Jauho and Jonson [12, 13, 14], Caiet al [15, 16],
Jiang [17] and Wagner [18] investigated the photon-assisted transmission of an electron
through the DBRTS with the potential barriers and well chosen in the rectangular form.
In [13] the DBRTS was considered for time modulation of both the potential barriers
and the potential well. The numerical results derived by Jauho [13] demonstrate different
peculiarities of the transmission probability depending on parameters of the system. That
is, it was shown that the satellite peaks in the transmission probabilities correspond to the
absorption/emission of modulation quanta. It was also pointed out that the time-periodical
modulation of the potential well influences the transmission probability more significantly
than the time-periodical modulation of the potential barrier. Complete destruction of the
photon-assisted resonant tunnelling in the form of strong quenching of the transmission
probability was found by Wagner [19] for certain amplitudes and frequencies of the time-
periodical perturbationV2 cosωt acting on the central well in the DBRTS.

The work of Sollneret al [20] began experimental studies of the effect of time-dependent
potentials in resonant tunnelling through semiconductor microstructures. They studied
the influence of electromagnetic radiation on the resonant tunnelling current. Much later
experimental investigations of the tunnel current through the DBRTS under the influence
of far-infrared radiation modulation were presented by Chittaet al [21–23]. In [23] the
changes in the current density due to the radiation, as a function of the dc bias voltage,
were measured for different frequencies of the radiation. Theoretically the changes in the
tunnel current through the DBRTS, which we—following Chittaet al—will call the FIR
response, were considered by Chittaet al [21] and Dakhnovskii and Metiu [24]. Also note
references [25–27] where the time-dependent tunnel current was considered as a response
to an external time-dependent voltage. Although these studies use different models of the
electron tunnelling through the DBRTS, the time-dependent perturbation inside the DBRTS
was considered as spatially uniform in the well.

However, as well as the dc electric field,E0 gives rise to a coordinate-dependent
perturbation of the formeE0x, and the irradiated electric field may have coordinate
dependence. To be specific, we assume that the laser beam is parallel to the layers of the
heterostructure. If the polarization of the time-dependent electric field is directed along the
electron transmission direction (i.e. perpendicular to the DBRTS layers), the time-dependent
perturbation will take a similar form, namelyeE1x cosωt . This dipole type of perturbation
is easier to exploit experimentally than the type that is spatially uniform in the well. Because
it is of dipole type, this dynamical perturbation should mix different quasilocalized states
in the quantum well and to lead to a Rabi splitting, as occurs in atomic systems [28]. It
would give rise to a Rabi splitting of the resonant transmission. This phenomenon was
first demonstrated by Johansson and Wendin [29]; it was what they called the dynamical
Stark effect in the two-level approximation for the quantum well obtained with the help of
a Green’s function treatment. The coherent and sequential tunnelling through the DBRTS
assisted by electromagnetic radiation with the wave vector parallel to the DBRTS and
polarized in the direction of electron transport was also considered by Iñarreaet al [30].
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However, they restricted consideration to just the first-order time-dependent perturbation
theory and were interested in problems where a quasilocalized resonant tunnelling state is
coupled by the radiation with a continuum of states in the collector where the frequency of
the radiation is much less than the difference between the quasienergies.

What seems to us especially interesting is that these perturbations may provide the
possibility of experimentally observing resonant and nonlinear dynamical phenomena
accessed up to now only in atomic and molecular systems. In fact, we demonstrate in
the present work the resonant effects and the Rabi splitting of the resonant transmission
which under certain conditions can be observed in the IVC provided that the frequency of
time-dependent perturbation is tuned to the distance between the resonant tunnelling states of
the DBRTS. The GaAs/AlGaAs/GaAs nanostructures are expected to provide perspective in
the study of nonlinear dynamical perturbations because dipole matrix elements are enhanced
in comparison with those in atomic systems, where they are restricted to the valueea where
a is the Bohr radius.

2. Formulation of the model

As was considered in the introduction, suppose that the laser beam (i.e. its wave vector)
is parallel to the interface of the heterostructure, and that the polarization of its electric
componentE(t) = E1 cos�t is directed normal to the interface—i.e., is directed along
the x-axis, which is the direction of the electron transmission. The radiation field is
spatially uniform over the whole heterostructure including the electrodes and potential
barriers. However, as was shown by Jauho [13], the effect of the radiation in the barriers is
much less strong than that in the potential well. This is quite clear if we take into account
the fact that the eigenfunctions corresponding to the quasienergy levels of the DBRTS are
exponentially small over the barriers. For the electrodes we—following [29]—assume that
the frequency of the radiation exceeds the plasma frequency (≈40 meV) of the electron
gas in the doped electrodes. Therefore most of the absorption/emission of radiation by the
tunnelling electrons occurs when they are in the quantum well.

Since there is no electrostatic field parallel to the interface of the heterostructure, the
problem of the electron transmission is reduced to solving a one-dimensional Schrödinger
equation of the form

i h̄
∂ψ(x, t)

∂t
=

{
− h̄2

2m∗
∂2

∂x2
+ U(x) − eE0x + eE1x cos�t

}
ψ(x, t) (1)

where the potentialU(x) creates a double-barrier form in thex-direction while in they-
andz-directions we have free motion. In reality, although in these directions the sample is
restricted, we can consider the electron system as a two-dimensional electron gas (2DEG).
And in any case we may separate space variables.

There is another case—that of polarization parallel to the interface of the DBRTS. Such
an alternating electric field mixes different transverse (evanescent) states of the 2D electron
gas described by a wave vector parallel to the layers of the DBRTS,k‖. Taking into
account the fact that the wavenumber of the FIR photons is much less than the wavenumber
of the electrons withkF ∼ 105 cm−1, the radiation will produce almost vertical transitions
of electrons (presumably0–0 points of the electron band). In that case the dynamical
perturbation can be written as

V (t) = E1〈k‖|d|k′
‖〉 cos�t = V2 cos�t.
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Therefore that perturbation can be considered as spatially uniform in the quantum well of
the DBRTS.

It is convenient in what follows to introduce the dimensionless variables

ξ = x/xc τ = t/tc ā = a/xc b̄ = b/xc (2)

ω = h̄�

Vc

3 = eE1b

Vc

λ = V2

Vc

γ = λ

ω
= V2

h̄�
(3)

where

tc ≡ h̄

Vc

xc ≡ h̄√
2m∗Vc

wherea is the barrier thickness,b is the quantum well width, andVc is the characteristic
dimensional constant which will be chosen below in the numerical calculations to be equal
to the potential barrier heightVb (approximately a few hundreds of meV). Moreover,
the characteristic lengthxc is comparable with the width of the potential well. In the
dimensionless variables, equation (1) takes the following form:

i
∂ψ(ξ, τ )

∂τ
=

[
− ∂2

∂ξ2
+ u(ξ) − v0ξ + 3

ξ

b̄
cosωτ

]
ψ(ξ, τ ) (4)

where the dimensionless 1D potential of the heterostructure isu(ξ), andv0 = eE0xc/Vc.
For the case of a time-dependent perturbation that is spatially uniform in the quantum well
the coupling term takes the formλ cosωτ .

3. Transmission and reflection amplitudes

As was discussed in the introduction, the coherent radiation has its main effect inside the
quantum well of the DBRTS. Hence, we can assume that the time-periodical perturbation
takes place in the potential well only. Following [3, 4] we write the wave function as
follows:

ψ(ξ, τ ) =
∞∑

n=−∞
exp[−i(ε + nω)τ ]ψn(ξ) ε = E/Vc

and substitute it into equation (4). Then integration over all times gives inside the well

(ε + nω)ψn(ξ) = −∂2ψn

∂ξ2
+ 3

2b̄
ξ
[
ψn−1 + ψn+1

] − v0ξψn. (5)

Following [3, 4] we write the wave function of the left electrode in the following form:

ψL(ξ, τ ) = e−iετ+ik0ξ +
∞∑

n=−∞
ψn,Le−ikn,Lξ−iετ−inωτ (6)

and the wave function of the right electrode as

ψR(ξ, τ ) =
∞∑

n=−∞
ψn,Reikn,Rξ−iετ−inωτ (7)

where

k2
n,R = ε + nω + v0b̄ k2

n,L = ε + nω. (8)

In the framework of the chosen scheme of the time-dependent perturbation, equation (5) is
exact, and a solution of it will be found numerically with the appropriate number of channels
to provide sufficient exactness of the calculations. Specifically, we find all amplitudesψn(ξ),
including the amplitudes of the right and left electrodesψn,R andψn,L.
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4. Numerical results on the transmission probabilities

We introduce the transmission probability of thenth satellite channelTn as

Tn = Re(kn,R)

k0,L

|ψn,R|2. (9)

The transmission probabilityTn defines a probability that an electron injected at the left-
hand electrode with energyε will be at the right-hand electrode with energyε + nω. This
means that during transmission through the DBRTS the electron will absorb/emitn quanta
of the external field. The accuracy of the computation was controlled by the requirement
that ∑

n

[Tn(ε, ω) + Rn(ε, ω)] = 1

where

Rn(ε, ω) = Re(kn,L)

k0,L

|ψn,L|2

is the reflection probability in thenth channel. Generally, the functionTn depends on both
ω andε.

To find the probabilitiesTn it is necessary to solve the infinite system of equations (5).
Actually, the numerical calculations show that the valuesTn converge rapidly to zero when
n → ∞, and for |n| > nc the transmission probabilitiesTn are negligible. The domain
of convergence|n| < nc essentially depends on the perturbation parameter3/ω. We find
that nc is roughly proportional to the value of the perturbation parameter: at3/ω = 2.5,
nc ≈ 2; at 3/ω = 7.5, nc ≈ 7.

Figure 1. The dependence of the total transmission probabilityT (ε) on the dimensionless
energyε of an injected electron in the DBRTS under the influence of the dipole-type time-
periodical perturbationV (ξ, τ ) = 3ξ cosωτ for the nonresonant case. The dimensionless bias
φ = v0b̄ = 0.256 and the frequency of the time-periodical fieldω = 0.05. The parameters of
the DBRTS are chosen as follows:vb = 1, ā = 3.0, b̄ = 10. Three resonant peaks correspond to
the second and third quasienergies in the potential well:ε2 −φ/2 = 0.1365, ε3 −φ/2 = 0.4665.

Using the rapid convergence of the functionsTn, we calculated numerically the
dependence of the total transmission probabilityT (ε, ω):

T (ε, ω) =
nc∑

n=−nc

Tn(ε, ω). (10)
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We performed the following calculations of the functionT (ε, ω): the dependence onε at
fixed ω (we denote that function asT (ε)), and the dependence onω at fixed energyε
(we denote this function asT (ω)) for the specific parametersvb = Vb/Vc = 1, ā = 3,
b̄ = 10. The first equality means that for a characteristic energyVc a height of barrier
Vb was chosen. It is useful to rewrite these specifications in dimensional units. For a
concentration of Al in the barriers ofx = 0.33, the conduction band offset is equal to
Vb = 245 meV [31]. For this concentration, tunnelling through the AlxGa1−xAs barrier
proceeds exclusively through the0–0 minima [32] of the electron band. Moreover we
consider that the radiation does not involve indirect X–0 transitions because the wavelength
of the radiation far exceeds 2π/kF . Taking into account a simple empirical relation for
the electron mass [33],m(x) = m(1 + αx) wherem ≈ 0.066m0, α ≈ 0.895, we obtain
xc = 12.8 Å, a = 38.4 Å, b = 128 Å. For these parameters of the DBRTS, the maxima
of the stationary transmission are for the following values of the energy of the incident
electron (quasienergy levels):

ε1 = 0.068 16 ε2 = 0.269 12 ε3 = 0.5899

or in dimensional units

E1 = 16.7 meV E2 = 65.93 meV E3 = 144.53 meV.

Figure 2. The Rabi splitting of the first and second resonant transmission peaks shown in
figure 1 for the case of resonant dipole perturbation. The dipole matrix elementξ12 ≈ 0.18.
The external bias is switched off. The parameters of the DBRTS are the same as in figure 1.

The dependence of the transmission probabilityT (ε) on the energy, when the external
electric ac field and the time-periodical spatially uniform perturbation are both switched
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on, was calculated in [12, 13, 15–17, 23, 34]. The results are that the modulation of the
potential well by weak perturbations gives rise to two additional resonant peaks located
at the energiesε1 ± ω. Also two slight photon-assisted peaks were obtained by Iñarrea
et al [30] via perturbation theory for the time-periodical perturbationpA(t). These peaks
are demonstrated in figure 1. Thus for the nonresonant perturbation there is no principal
difference between the spatially uniform time-dependent effects and the spatially uniform
effect of dipole type. Increasing of the perturbation parameterγ = λ/ω leads to the
appearance of new transmission channels at the quasienergiesεi ± nω and to the strong
suppression of the initial channels with quasienergiesεi . In particular Wagner [18, 19] found
the dependence of the transmission probability as a function of the amplitude and frequency
of the spatially uniform time-dependent perturbation, and discovered strong quenching of the
transmission probability due to zeros of the Bessel functions. However, for a resonant case,
such as that of the dipole interaction of the DBRTS with radiation mixing the quasienergy
levels, we may expect resonant effects which are well known in atomic and molecular
systems coupled with the radiation. Among them is the Rabi splitting of the resonant peaks
of the transmission by a frequency

�2
r =

(
εi − εj − ω

2

)2

+ 32|〈i|ξ |j〉|2 (11)

where〈i|ξ |j〉 = ξij is a matrix element of the dipole transition between quasienergy states
i and j . The corresponding new positions of the resonant tunnelling through the DBRTS
are

ε̃i,j = εi + εj

2
± �r. (12)

These formulae are easily obtained in the two-level approximation [28].

Figure 3. (a) The frequency dependence of the Rabi splitting calculated (circles) and defined
by formula (12) (continuous curves). (b) The linear dependence of the Rabi splitting1ε on the
coupling constant3 for the case defined in figure 2.

The Rabi splitting of peaks of the resonant tunnelling through the DBRTS under
the influence of resonant time-periodical dipole perturbation is demonstrated in figure 2.
Figures 2(a) and 2(b) show the case where the frequency of the radiation is slightly below
ε2 − ε1; figures 2(c) and 2(d) correspond to the exact resonant perturbationω = ε2 − ε1, and
figures 2(e) and 2(f ) show the case where the frequency of the radiation is slightly above
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Figure 4. The frequency dependences of the total transmission probability for the dipole
perturbation3ξ cosωτ (curves 1) and the time-periodical perturbation spatially uniform in the
quantum wellλ cosωτ (curves 2) when the energy of the incident electron is resonant with the
first quasienergy of the DBRTS. (a)λ = 0.025, 3 = 0.05; (b) λ = 0.05, 3 = 0.1; (c) λ =
0.1, 3 = 0.2. (d) A schematic view of the frequency behaviour of the energy levels described by
formulae (11) and (12). (e) and (f ) show the cases where the energy of the incident electron is
slightly above and below the quasienergyε2 shown in (d) by dashed lines;λ = 0.025, 3 = 0.05.
The parameters of the DBRTS are as follows:ā = 3.0, b̄ = 10, vb = 1, φ = 0.

ε2 − ε1. Qualitatively these pictures of the Rabi splitting coincide with those obtained by
Johansson and Wendin [29]. In figure 3 the Rabi splitting of the second peak of the resonant
tunnelling through the DBRTS as a function of the frequency (a) and amplitude (b) of
radiation is plotted as circles. It is compared with formulae (11) and (12), and demonstrates
excellent agreement. A small deviation between the the calculated Rabi splitting and the
splitting from formula (12) in figure 3(b) is explained by the fact that there is a shift of
quasienergy levels in the second order of perturbation.

A substantial difference between the dipole type of time-periodical perturbation and
the spatially uniform perturbation is seen for the energy of the incident electron tuned
to the quasienergy level of the DBRTS, as is shown in figures 4(a), 4(b) and 4(c). The
external bias is switched off for simplicity. The most interesting frequency behaviour of the
total transmission is observed when the energy of the incident electrons slightly deviates
from the quasienergy level, as is shown in figures 4(e) and 4(f ). This deviation should
be less than the width of the quasienergy level. In an effort to understand this unusual
frequency behaviour we show schematically in figure 4(d) the Rabi splittings of energies
with increasing frequency. For a deviation|ε − ε2| less than the width of the second
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quasienergy levelε2 for small frequency, the transmission is almost constant and exceeds
zero. In the vicinity of the first resonance defined by the relationε1 + ω = ε2, the first
Rabi splitting takes place. It leads to a deviation of the quasienergy levelε̃2 up from the
energy of the incident electron with a consequent decrease of the transmission. Increasing
of the frequency leads to intersection of the first quasienergy levelε̃1 with the energy of
the incident electron, with a corresponding sharp increase and decrease of the transmission.
Further increasing of the frequency gives rise to a new Rabi splitting with the quasienergies
ε1 + ω andε3 − ω. This pattern is repeated in the opposite sequence except as regards the
heights and widths of the peaks, because of the different widths of the quasienergy levels
εi of the DBRTS. If the energy of the incident electron was tuned to slightly aboveε2, the
pattern would be repeated in the opposite way, as is shown in figure 4(f ).

While the dipole time-periodical perturbation3ξ cosωτ gives rise to essential features
of the frequency dependences of the total transmission probability, as is seen from
figure 4(a), 4(b) and 4(c) (curves 1), the spatially uniform perturbationλ cosωτ has no
visible peculiarities except slight peaks at resonant frequencies for strong-coupling constants
(curves 2). Huge resonant dips shown by curves 1 are easily explained by the Rabi splitting
(see figure 3(a)). Slight peaks induced by spatially uniform time-periodical perturbation
are just satellite peaks located atω = ε2 − ε1. Thus, the radiation field in the infrared
region coupled with the DBRTS provides the possibility of strongly governing the resonant
tunnelling near resonance. As will be shown in the next section, the same is true for the
IVC.

5. The current–voltage characteristics driven by external time-periodical
perturbations

One of the most important characteristics of the DBRTS is their extremely fast electric
response which has been demonstrated in their application as detectors up to 2.5 THz [20]
and quantum well oscillators up to 420 GHz [35]. Chittaet al [23] investigated both
theoretically and experimentally the influence of far-infrared radiation on the tunnel current
of the DBRTS. In order to couple the radiation to the confined electrons inside the quantum
well, they used a grating coupler geometry to obtain a component of the ac electric field
from the radiation perpendicular to the layers (parallel to the current). This scheme provides
a coupling of the DBRTS with the radiation field via the termpA(t) (or, equivalently, via
the dipole-type interaction), so the calculations of Iñarreaet al [30] were able to give good
agreement with the experiments of Chittaet al.

In this section we consider the current–voltage characteristics under the influence of the
spatially uniform time-periodical perturbationλ cosωτ and the dipole one3ξ cosωτ with
the aim of investigating resonant phenomena in the IVC. The first case of the perturbation
was considered by Chittaet al [23], who showed substantial changes of the IVC peak,
and Dakhnovskii and Metiu [24], who were the first to demonstrate a negative direct
current opposite to the direction of the applied voltage. Here we only complement these
investigations by consideration of the IVC for stronger couplings and a wider range of the
bias.

The effects of the dipole type of time-periodical electric fields on the IVC were
considered by Johansson and Wendin [29] and Iñarreaet al [30]. For the resonant case of the
time-periodical perturbation the dynamic Stark shift of the first IVC peak was demonstrated
[29]. In a related section, we aim to demonstrate the Rabi splitting of the IVC and consider
conditions under which that phenomenon can be observed.

Formulae for the current induced by constant bias may be found in various references
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Figure 5. Current–voltage characteristics of the DBRTS under the influence of the spatially
uniform time-periodical fieldλ cosωτ . (a) The static case is shown with two peaks corres-
ponding to the first and second quasienergies. (b) The frequency of the ac field is resonant with
the quasienergy levels:ω = ε2 − ε1 = 0.198 (7.76× 1013 Hz). (c) The perturbation parameter
λ/ω = 1. (d) The difference between the stationary IVC and the IVC affected by the ac field,
where the continuous curve (1) corresponds toλ = 0.05, the dotted curve (2) corresponds to
λ = 0.1, and ‘+’ (3) corresponds toλ = 0.2. The conduction band width of the electrodes is
equal to 0.05 (12.25 meV). The arbitrary unit of current corresponds to 777.5 A cm−2 and the
unit of the external constant voltage corresponds to 0.245 V provided that the concentration of
Al in the barrier layers is equal to 0.33. It is seen from (c) and (d) that moderate dynamical
perturbation leads to a negative peak of the current for positive voltage. The parameters of the
DBRTS are chosen as follows:̄a = 1.5, b̄ = 10 Å (a = 19.2 Å, b = 128 Å).

(see, for example [32, 30, 36]). Here we use the following expression for the total current:

IL = 4em∗V 2
c

h̄3

1

(2π)2

∫ √
εF

0
(εF − k2)k(TL,R − TR,L)(ε) dk (13)

whereTL,R, TR,L are the total probability of transmission from left to right and from right
to left defined by formula (10). They interchange for negative biasφ.

5.1. The IVC of the DBRTS under the influence of the spatially uniform time-periodical
perturbation

Obviously, one can expect in accordance with figure 4 that for this perturbation there are
no visible resonant effects in the IVC. In figure 5 the IVC are shown: for the static case
(a); for the case of resonant perturbation with frequencyω = ε2 − ε1 (b); and for the
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nonresonant case (c). Comparison of figures 5(a) and 5(b) shows that an application of the
resonant spatially uniform time-periodical perturbation has no effect. And only for rather
small frequency when the perturbation parameterλ/ω is becoming of the order of unity can
we see noticeable modifications of the IVC. Note that in figure 5 and forthcoming figures
the current is presented in arbitrary units. In accordance with formula (13), if we choose
the parameters of the DBRTS as in the previous section the unit of current density would
correspond to a value of 777.5 A cm−2 and the unit of the external constant voltage would
correspond to 0.245 V.

Strong spatially uniform time-periodical perturbation, as seen from figure 5(c), gives
rise to an additional peak of the IVC at the voltageφ ≈ 0.2. Taking into account that the
application of a bias approximately shifts the quasienergy levels in the DBRTS by the value
φ/2, one can easily recognize that this new peak is caused by a satellite peak of the total
transmission.

The next peculiarity of the IVC is the appearance of a negative current for strong
perturbation, as is seen from figure 5(c). This means that the ac electric field applied to the
DBRTS forces current to flow in the direction opposite to the bias. The induced negative
conductance was found firstly by Frishman and Gurvitz [37] in multiple-well heterostructures
and then by Dakhnovskii and Metiu [24] in the DBRTS.

It is easy to understand this phenomenon if one takes into account the fact that the Fermi
energy of both the right and the left electrodes is less than the frequency of the ac field. In
computer simulations of the IVC the Fermi energy of the electrodes was chosen to be equal
to 0.05 (12.25 meV), while the dimensionless frequency of the alternating fields is not less
than 0.1. So, under increasing bias the satellite resonant channels approximately defined by
the formulaεi + nω − φ/2 may be beyond the conduction band of the left-hand electrode
while these resonant channels may lie in the conduction band of the right-hand electrode
lifted by the bias. Hence, this will give rise to a suppression of the left-hand current while
the right-hand current will flow through the DBRTS.

In figure 5(d), like Chittaet al [23] we plotted the difference1I = Istat − Idyn (the
FIR response) as a function of the bias. Qualitatively, features of1I for the first peak
of the IVC are very similar to the ones calculated by Chittaet al with the assumption
of spatially uniform time-periodical electric fields for the bias from zero to 0.2 which in
dimensional units corresponds to a voltage of 50 mV. In the next region of bias, from 0.2
to 0.7 (from 50 mV to 172 mV), we can see stronger changes of the IVC under the effect
of the spatially uniform time-periodical perturbation, and correspondingly we have huge
differences1I near the second peak of the IVC. Obviously, the reason for that is that the
second resonant quasienergy levelε2 has a width of level substantially exceeding the width
of the first quasienergy levelε1.

5.2. The IVC of the DBRTS under the influence of the dipole time-periodical perturbation

As was seen from figures 2 and 4, the dipole time-periodical perturbation has a more
substantial resonant effect on the transmission of electrons through the DBRTS in
comparison with the spatially uniform one. It is reasonable to assume that the same is
true for the IVC of the DBRTS, as is demonstrated in the following figures. In figure 6
the IVCs are shown for various coupling constants3 and frequencies in the vicinity of the
first resonanceω ≈ ε2 − ε1. As was mentioned in the introduction, the nonresonant effect
of the dipole time-periodical perturbation was numerically considered by Iñarreaet al [30]
and Wagner [19].

One can see from figure 6, even for a small coupling constant3, that the dipole
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Figure 6. Current–voltage characteristics of the DBRTS under the influence of the dipole time-
periodical perturbation3ξ cosωτ with frequencies in the vicinity of the resonanceε2−ε1 = 0.2.
The Rabi splitting of the first peak (a) and the second peak (b) of the IVC. The conduction band
width of the electrodes is equal to 0.025. The lowest curve responds to the static case where
3 = 0.

dynamical perturbation induces very noticeable changes of IVC peaks. Because of the
resonance, the changes of the IVC reflect the Rabi splitting of the resonant transmission
through the DBRTS. That effect is distinctly seen for a stronger coupling constant as is
shown in figure 7. In both figures the evolution of the first and second peaks of the IVC
with increasing frequency of the dynamical perturbation is shown. In correspondence with
figure 2(a) one can see in figures 6 and 7(a) that the first stationary peak of the IVC for
a frequency below the resonant one acquires a slight but wide additional peak at the right,
which is increasing and approaching the left. For the resonant frequency of the dipole time-
periodical perturbation we can see a splitting of peaks of the IVC. However, for the small
coupling constant3 = 0.05 (figure 6) these peaks are strongly overlapped. For a frequency
above the resonance we can see a small peak of the IVC at the left and a large peak at
the right. Also, in full correspondence with figure 2(b), we can observe from figures 6
and 7(b) opposite evolution of the stationary second peak of the IVC related to the second
quasienergy level of the DBRTS. These figures show that the IVC are very sensitive to
the tuning of the frequency of the time-periodical electric fields to the energy differences
between the quasienergy levels in the quantum well of the DBRTS. Moreover, to clearly
observe the Rabi splitting of the IVC effected by the radiation field it is necessary to apply
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Figure 7. The same as in figure 6, but for a stronger coupling constant.

strong laser fields. However, in order to observe such a nonlinear optical phenomenon as
the Rabi splitting of the IVC, the density of free carriers in the electrodes may have to be
decreased. The width of the conduction band of the electrodes defined by the density of the
free electrons (or holes) has the most importance for observing resonant phenomena in the
IVC. This is shown in figure 8 for an extremely narrow conduction band of the electrodes
equal to 0.01. Moreover one can observe the Rabi splitting not only of the basic stationary
peaks of the IVC but even of a dip, as is shown in figure 8(c). The origin of the resonant
two-photon dip is shown in figure 9. Assume that the conduction band of the left-hand
electrode with the chemical potentialµL does not coincide with any of the quasienergy
levels of the DBRTS. Also assume that the splitting takes place forn-photon absorbed left-
hand electrons with energyµL + nω. Under these assumptions the transmission from the
left to the right is prohibited (TLR = 0 in formula (13)). On the other hand, assume that
for n-photon absorbed right-hand electrons a condition

µR = µL − φ ≈ ε̃i − φ/2 (14)

is satisfied where thẽεi are the quasienergies of the DBRTS. For simplicity, the shift of the
quasienergies inside the DBRTS induced by the biasφ was taken as−φ/2 [32]. For the
nonresonant time-periodical perturbation,ε̃i ≈ εi + nω wheren is an integer, while for the
resonant effect, these quasienergies are given by (12). Relation (14) defines the position of
a dip in the IVC. If we choose the frequency of the time-periodical perturbation equal to
0.14, in accordance with formula (14), we find that the two-photon resonant dip appears at
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Figure 8. The IVC for an extremely narrow conduction band of the electrodes equal to 0.01,
which demonstrates the Rabi splittings of the dip in the IVC. (a) The static case. (b) The
spatially uniform time-periodical perturbationλ cosωτ with a frequency resonant withε2 − ε1.
It is shown that there are no resonant effects for the dipole perturbation (c). (d) The case of
the nonresonant dipole time-periodical perturbation which demonstrates that the position of the
dip in the IVC is defined by two-photon excitation of electrons in the left-hand electrode at a
voltage ofφ = 2(2ω − ε2).

Figure 9. An illustration of two-photon excitation of the transmission from right to left.

the voltageφd ≈ 2(2ω − ε2) ≈ 0.04. In fact, the position of the resonant dip in figure 8(d)
coincides with that estimate.
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Figure 10. The dependence of the absorbed/emitted energy of an electron transmitted through
the DBRTS,1ε, on the energyε of an injected electron for a fixed value of the frequency
ω = 0.05 and for different values of the coupling constantλ. Arrows indicate the peaks of the
resonances of absorption and emission of the modulation quanta; (a)λ = 0.05; (b) λ = 0.01.

6. Absorption and emission of energy by a transmitted electron

The transmission probabilityT (ε) has a resonant structure with peaks located atε = εi +nω.
This assumes that the transmitted electron may have an energy different from the energy
of the injected electron due to the absorption or emission of the modulation quantanω

[11, 12, 13]. For a small and moderate perturbation parameterγ = λ/ω the processes
of absorption and emission of one modulation quantum dominate. In this section we will
consider the energy absorbed/emitted by an injected electron transmitted through the DBRTS
analytically and numerically for the case of a time-periodical perturbation spatially uniform
in the quantum well.

The mean energy of the transmitted electron can be written as

〈ε〉 =
∫

ψ∗
R(ξ, τ )(−∂2/∂ξ2)ψR(ξ, τ ) dξ

/ ∫
|ψR(ξ, τ )|2 dξ (15)

where the integration is performed over the region of the right-hand electrode. After
substitution of the wave functionψR defined by equation (7) into (15) and averaging over
time we obtain

1ε ≡ 〈ε〉 − ε =
∑

n

nωtn

/ ∑
n

tn. (16)
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where we have introduced the definition

tn = |ψn,R|2.
The function1ε introduced in (16) describes the absorption (1ε > 0) or emission

(1ε < 0) of energy by an electron transmitted through the DBRTS. This function was
computed numerically. In figure 10 we present the dependence of the function1ε on the
energy of an injected electronε. As figure 10 shows, for the energy of the injected electron
tuned toεi − |n|ω, absorption of the modulation quanta takes place. For the energy of
the injected electron tuned toεi + |n|ω, the emission of the modulation quanta occurs.
When the energy of an injected electron is tuned to the fundamental resonant energiesεi ,
the processes of absorption/emission of the modulation quanta by an electron are strongly
suppressed. Figure 10(a) corresponds to moderate perturbation (γ = 1). In this case the
processes of absorption/emission of one and two modulation quanta are easily seen.

The case of the small perturbation parameterγ = λ/ω � 1 is shown in figure 10(b)
for γ = 0.2. One can see that there are only the processes of the absorption/emission
of one modulation quantum at energies equal toε ± ω. For γ � 1 the processes of
absorption/emission of the modulation quanta can be investigated analytically on the basis
of the perturbation theory. Consider, for example, the case where the energy of an injected
electron is tuned to the ‘left satellite’:ε ≈ εi − ω, where i = 1, 2, 3. For γ � 1 we
shall keep in the formulae the 0th channel (m = 0) since it gives the contribution to the
transmission probability of the orderγ 0, and the first channel withm = 1. Strictly speaking
we should keep in the formula also the(−1)th channel (withm = −1) too. However the
first channel is special because of its resonant denominator. Details of the calculations are
given in [38]. Here we give only the final result for the absorption of energy by an injected
electron which takes the following form:

1ε

ω
= t1(ε)

t0(ε) + t1(ε)
≈ (γ /2)2r(ε)r(ε + ω)

1 + (ε − εi + ω/δi)2
(17)

where

r(ε) = sinh2(
√

1 − εā)

4ε
√

1 − ε

and

δi =
√

ε

b̄r(ε)

is the width of theith resonant quasienergy level. We can see that the expression (17)
has a resonant structure at energies equal toεi − ω which are observable in the numerical
calculations presented in figure 10(b). Moreover, the values of 1/r(ε) have the meaning
of the probabilities of transmission through a single potential barrier. Hence, the less the
degree to which the barrier is penetrable (the narrower the peak of the resonant tunnelling
in the DBRTS), the more the effect of the resonant absorption of the energy.

We introduce the parameterλ(i)
c which characterizes (in the frames of the perturbation

theory) the transition to the regime of saturation of the one-photon absorption for the
transmission of an electron with the energyε ≈ εi − ω through the DBRTS. To estimateγc

we use the conditiont1(ε) ∼ t0(ε) which gives

γ (i)
c ≈ 8εi

√
1 − εi

sinh2[ā
√

(1 − εi)]
(18)

provided thatr(ε) ≈ r(ε + ω). The last condition simply means thatω � ε.
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Figure 11. The dependence of the absorbed/emitted energy1ε of the transmitted electron on the
coupling constantλ. (a) Curve 1 corresponds toε = ε1 −ω; curve 2 corresponds toε = ε1 +ω;
curve 3 corresponds toε = ε1 − ω − δ; curve 4 corresponds toε = ε1 + ω − δ whereδ = 0.004
is the detuning from the resonance, andε1 = 0.066, ω = 0.02. (b) Curve 1 corresponds to
ε = ε2 − ω; curve 2 corresponds toε = ε2 + ω whereε2 = 0.2645, ω = 0.05. (c) The same as
(a) but for larger values of the coupling constantλ.

The parameterγ (i)
c characterizes the crossover in the behaviour of the energy absorption

1ε to the perturbation parameterγ . That is, for 1> γ > γ (i)
c a transmitted electron absorbs

approximately one modulation quantum, and the process of absorption is saturated.
Analogously, the perturbation theory (forγ � 1) can be developed for the right-hand

satellites withε ≈ εi + ω. In this case the main contributions to the transmission of
an electron through the DBRTS give the 0,(−1)th channels. Thereby, for this case the
processes are mainly those of emission of the modulation quantum.

In figure 11 we present the dependence of the absorbed/emitted energy1ε of a
transmitted electron on the coupling constantλ at the fixed values ofω obtained numerically.
The curves 1 and 2 in figures 11(a) and 11(b) correspond to the energy of an injected electron
tuned to the left-hand and the right-hand satellites, correspondingly. As one can see from
figures 11(a) and 11(b) the curves have quadratic behaviour at smallγ in agreement with
formula (17) for the perturbation theory. Whenγ (or λ) is increased the curves change their
behaviour, and the saturation takes place for the processes of absorption/emission of the
energy. According to formula (18) we can find an estimation forγ (i)

c . For the parameters
chosen in figure 11(a),γ (i)

c ≈ 0.1, and for the parameters chosen in figure 11(b)γ (i)
c ≈ 0.7.

As one can see these estimates are in good agreement with the results of the numerical
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calculations presented in figures 11(a) and 11(b). When the energy of an injected electron
is detuned from the exact resonance, the dependence of1ε on γ (or λ) changes (see curves
3 and 4 in figure 11(a)), and becomes much weaker. Whenγ (or λ) increases significantly,
the dependence of1ε becomes more complicated; this is connected with the violation of
the perturbation theory. In this case new channels appear in the transmission probability,
which give the contribution to the behaviour of the absorption/emission of the electron’s
energy (see figure 11(c)).

7. Conclusion

The periodical modulation of the potential well with the frequency� in a double-barrier
resonant tunnelling nanostructure leads to the appearance of additional channels in the
transmission probability at the quasienergiesEi + nh̄�, where theEi are the quasienergies
of the unperturbed system. The dependences of the transmission probability on the energy
of an injected electron and on the frequency of the external modulation field show that the
resonant behaviour depends strongly on the perturbation parameters. We considered two
types of perturbation: (a) a dipole time-periodical perturbation directed along the DBRTS
which has the formV1(x, t) = V1x cos�t ; and for comparison (b) a spatially uniform
time-periodical perturbation in the formV2(t) = V2 cos�t ; these are both supposed to be
localized inside the quantum well.

As was shown in figures 5–8, sufficient changes of the IVC in the form of substantial
suppression of the stationary CVC peaks and the arising of new peaks and dips in the
IVC take place for the dimensionless coupling constant3 not exceeding 0.1 and for
frequencies resonant with the differences between the quasienergies in the potential well.
These frequencies have the order of 0.2. The main effect is the Rabi splitting of the
stationary basic peaks of the IVC. The narrower the conduction band, the stronger the
Rabi splitting (figures 7 and 8). The second effect is the Rabi splitting of the resonant
dip shown in figure 8(c) which is caused by the two-photon processes shown in figure 9.
Thus, measurements of the IVC may be used to observe resonant phenomena which take
place for a frequency of the dipole type of the time-periodical perturbation near the distance
between the quasienergies of the DBRTS. On the other hand, numerical calculations show
that the time-dependent perturbation spatially uniform in the quantum well give rise to very
weak resonant effects. Hence, the semiconductor heterostructures may be rather useful in
the study of various resonant and nonlinear optical phenomena inherent in atomic systems.

If we restore the dimensional parameters of the DBRTS (the size of the wellb ≈ 130Å,
the height of the barrierVb = 245 meV, and the frequency of the radiation� ∼ 1013 Hz),
the value of the dimensionless coupling constant3 = 0.1 corresponds to the characteristic
amplitude of the time-periodical electric field:

E1 = 2Vb3

eb
≈ 4 × 104 V cm−1. (19)

Correspondingly, the power of the infrared laser should be more thanW ≈ 4×105 W cm−2

with account taken of the coupling efficiency. Referring to Chittaet al [23] who used a FIR
laser with a power of about 10 W, we see that this power of the laser is more than enough if
we estimate the minimal square of the FIR laser beam as the length of the radiation wave in
the square (∼6×10−6 cm2). One can see from formula (19) that the dimensional amplitude
of the radiation may decrease with the increasing of the width of the quantum well of the
DBRTS and the decreasing of the height of the potential barriers.
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